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Abstract

The paper at hand motivates, proposes, demonstrates, and evaluates a novel systematic approach to discovering causal dependencies
between events encoded in large arrays of data, called causality mining. The approach has emerged in the discussions with our
project partner, an Australian public energy company. It was successfully evaluated in a case study with the project partner to
extract valuable, and otherwise unknown, information on the causal dependencies between observations reported by the company’s
employees as part of the organizational health and safety management practices and incidents that had occurred at the organization’s
sites. The dependencies were derived based on the notion of proximity of the observations and incidents. The setup and results of the
evaluation are reported in this paper. The new approach and the delivered insights aim at improving the overall health and safety
culture of the project partner practices, as they can be applied to caution and, thus, prevent future incidents.
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1. Introduction

Health and safety (H&S) refers to regulations and proce-
dures intended to prevent incidents, e.g., accidents or injuries, in
workplaces or public environments.1 The failure to control haz-
ards contributes to over half a million work-related injuries and
illnesses (annually in Australia), including more than 125,000 se-
rious injury cases [1]. In 2009, the cost of work-related injuries
and illnesses to the Australian economy was estimated at about
$60.6 billion (4.8% of GDP) [1]. Safe Work Australia2 reports
total economic cost for the 2012–13 financial year to be $61.8
billion (4.1% of GDP for the same period) [2]. Globally, there
are 2.3 million deaths annually for reasons attributed to work [3].
In 2012, the costs of work-related injuries and illnesses for the
global economy varied between 1.8 and 6.0% of GDP in country
estimates, the average being 4% [3].

H&S regulations and procedures are a concern in many in-
dustries. Safe Work Australia reports that in the period between
2011–12 and 2014–15, annually, per 1000 employees, serious
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1https://en.oxforddictionaries.com/definition/health_and_safety
2Safe Work Australia is an Australian Government agency. Its functions

include improvement of work health and safety and regulation of workers’
compensation arrangements across Australia.

H&S claims3 were estimated in the range of 4.7–6.0 claims in
the electricity distribution sector, 9.9–12.2 claims in the mining
sector, and 22.9–29.9 claims in pipeline and other transport [4].
In the period between 2011–12 and 2014–15, median compensa-
tion paid for serious claims in these industries were estimated
in the range of $9,900–$14,000 in the electricity distribution
sector, $15,600–$17,100 in pipeline and other transport, and
$21,300–$26,400 in the mining sector [5].

Organizations strive to decrease H&S risks. They collect
and analyze information about internal H&S incidents that have
occurred in the past with the ultimate goal of acquiring an un-
derstanding of their causes and, consequently, preventing them
in the future. This information is often scattered across the mass
of Big Data [6] stored in organizations’ information systems,
i.e., voluminous and complex data sets that often miss explicit
semantic relationships between individual data items, written
documents, knowledge of employees, and aggregate reports.
In this paper, we collectively refer to this information as the
universe of (H&S) data.

To derive valuable insights from the universe of data, or-
ganizations resort to data mining [7] and process mining [8]
techniques. Data mining is the process of discovering patterns,
i.e., reoccurring dependencies between entities, in large data sets.
Data mining techniques are often domain agnostic and, thus, not
tailored for the discovery of process-related entities and con-
straints, like events of incidents and their causalities. Several
existing approaches use data mining to discover correlations

3A serious claim is an accepted workers’ compensation claim that involves
one or more weeks away from work and excludes all fatalities, and all injuries
and diseases experienced while traveling to or from work or while on a break
away from the workplace.
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between known factors captured in descriptions of past inci-
dents [9–12], e.g., most of the fatalities occur on rainy summer
days between 7:00 am and 11:00 am. However, these approaches
cannot identify unknown factors and events that have caused or
contributed to the incidents. Process mining builds on data min-
ing and process model-driven approaches [8]. Process mining
techniques analyze event logs recorded by information systems
that capture the history of executed processes to identify reoc-
curring patterns of events. However, process mining techniques
are limited in their abilities to recognize process information,
e.g., events and their dependencies, recorded in unstructured
arrays of data.

The paper presents the results of a project with an Aus-
tralian public energy company with its core business in natural
gas exploration, electricity generation, and energy retailing, on
developing an approach for automatic discovery of causal de-
pendencies between observations reported by the company’s
employees as part of the organizational H&S management prac-
tices and incidents that occurred at the organization’s sites. The
company has a strong reporting culture; as a result, thousands
of reports are created by employees. Analyzing huge amounts
of data associated with these reports presents a challenge to the
company. Hence, the business objective of the project was to de-
vise an approach for extracting insights into incident prevention
from the company’s H&S data. This objective was translated
into a more specific data mining task: to devise an approach for
mining causalities between events recorded in the H&S data,
which we will refer to as causality mining. The approach is pro-
posed as an adaptation of Cross-Industry Standard Process for
Data Mining (CRISP-DM) [13], which is the de facto standard
for developing data mining projects [14].

The core contributions of this paper are summarized below:
• A model for Causality Mining for discovering event causal-

ities based on the notion of proximity.
• An evaluation of the proposed proximity model in a case

study with the project partner aimed to discover causalities
between H&S observations and incidents.

Section 2 is devoted to the discussion of the approach used.
Section 3 describes a developed model of H&S data. Sections 4
and 5 exploit the notion of proximity to propose a causality
model for discovering causal dependencies between events in
H&S data. Section 6 reports on an evaluation of the proposed
approach through a case study. Section 7 summarizes related
work, whereas Section 8 summarizes the paper’s contributions
and discusses avenues for future work.

2. Approach

Data mining refers to “the process of discovering interest-
ing patterns and knowledge from large amounts of data” [7].
CRISP-DM is the de facto standard for conducting data mining
projects [14]. Our approach for causality mining from the uni-
verse of H&S data is an adaptation of CRISP-DM. We introduce
CRISP-DM in Section 2.1 and describe our proposed approach
in Section 2.2.

2.1. Cross-Industry Standard Process for Data Mining

CRISP-DM is a non-proprietary, documented data mining ap-
proach developed by industry leaders which provides a blueprint
for data mining projects [13]. The model encourages best prac-
tices and helps organizations to conduct faster projects that can
be replicated and lead to better results.

CRISP-DM breaks down the data mining approach into six
phases [13]:

1. Business understanding. This is arguably the most im-
portant phase of a data mining project. The main tasks
of this phase include the acquiring of understanding of
business objectives, the definition of data mining goals
aligned with these objectives, the evaluation of resources
available for the project and the development of a plan
which would allow to achieve the business objectives with
the available resources.

2. Data understanding. This phase is concerned with the
initial data collection, the description of the collected data
(e.g., describing data attributes and the number of records),
the initial data exploration (e.g., using querying or data
visualization to understand properties of the data), and the
evaluation of the data quality (e.g., the data completeness).

3. Data preparation. During this phase of the data min-
ing project the collected data is transformed into a form
suitable for data mining methods. This may include the se-
lection of appropriate data sets, records and attributes, the
derivation of new attributes, combining data from differ-
ent sources, data cleaning (e.g., tackling missing values)
and data formatting.

4. Modeling. During the modeling phase different data mod-
eling methods are considered (e.g., the use of neural net-
works or decision trees), calibrated and tested. An appro-
priate model is selected based on initial assessment results
(e.g., a model with the highest prediction accuracy).

5. Evaluation. The model built during the modeling phase is
evaluated against the business objectives identified during
the first phase of the project. The evaluation is usually
conducted in collaboration with domain experts. Based
on the evaluation results, the project manager decides
whether to proceed to the deployment phase.

6. Deployment. The knowledge acquired through the ap-
plication of data mining during previous phases of the
project has to be presented in a form that can be used
by the organization. This may involve the preparation of
reports or implementation of the developed model in the
organization.

The data mining process or any of its phases can be repeated
if required. For example, there may be a need to return to the
data preparation phase after the modeling phase if a selected
model requires a different data format.

2.2. Approach used in this study

We adapted the CRISP-DM methodology to explicitly take
into account the viewpoint of H&S processes involved (e.g., re-
porting of observations, monitoring of incidents, review of in-
cidents) throughout the various phases. We then designed a
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novel causality mining approach for H&S data informed by the
interviews with the H&S domain experts. We now detail each
phase of the proposed approach depicted in Figure 1.

1. CRISP-DM1: Business and process understanding.
The main tasks of this phase include (i) developing an un-
derstanding of business objectives, and (ii) the definition
of data and process mining goals aligned with these ob-
jectives. A detailed understanding of business processes
involved can be achieved through multiple interactions
with stakeholders.
We conducted multiple meetings and unstructured inter-
views with H&S experts from the case study company
who have the knowledge of the company’s H&S pro-
cesses and information recorded about these processes
by information systems. This allowed us to identify a
major challenge the company faces, i.e., how to extract
insights into incident prevention from the company’s H&S
data, and to formulate the project objective, i.e., devising
an approach for discovering causal dependencies between
observations and incidents recorded in the data.

2. CRISP-DM2: Process data understanding.
Identifying the domain of discourse, i.e., objects, relations
between objects, and constraints that relate to the events in
the domain is an essential first step. This is followed by the
initial data collection, data exploration and evaluation of
data quality. In order to facilitate an initial understanding
of data, we also propose to construct a conceptual data
model of the domain.
The conceptual model proposed in this project extends
the model proposed in [15], which describes the basic
objects , e.g., events, and their relations, e.g., causality. In
collaboration with the case study partner, we learned what
information about observations and incidents is reported
by employees and recorded by the company’s information
systems. We created a conceptual model of this informa-
tion using the Object Role Modeling notation [16]. H&S
information recorded by the company and the developed
conceptual model are discussed in Section 3.

3. CRISP-DM3: Process data preparation.
The main steps in the process data preparation stage in-
clude populating the conceptual model from the universe
of data and discovering the missing elements in the pop-
ulation. We propose to refine the conceptual data model
developed as part of the process data understanding phase
based on a better understanding of the process through
a careful analysis of observed instances. Hence, we ad-
vocate multiple iterations between these two phases to
ensure the quality of the resulting conceptual data model.
The data was collected by the case study partner from the
company’s information systems which record H&S infor-
mation. We selected relevant data attributes (described in
Section 3) and organized them into three data sets con-
taining information about observations (1), incidents (2)
and the organizational structure (3), i.e., relationships be-
tween departments, sub-groups, groups, business units
and divisions.

4. CRISP-DM4: Modeling.
This modeling phase was adapted to include not only the
application of existing data modeling methods or process
mining methods but also the development of new meth-
ods should they be necessary. For this project, there is
a requirement to formulate hypotheses about causal de-
pendencies between events in the domain and to confirm
causal dependencies between events in the population by
testing the hypotheses. We adapted a method to discover
missing pieces of information in the conceptual schema
and propose a model based on the notion of proximity in
Section 5. We also recognized the need to iterate between
the modeling phase and the evaluation phase to improve
the outcomes from the proposed technique.

5. CRISP-DM5: Evaluation.
The findings from the hypotheses in Phase 4 are then
confirmed in collaboration with domain experts. This
phase is expected to be repeated multiple times after the
parameters of the proposed model in Phase 4 are adjusted
and the hypothesis testing is repeated. The results of this
evaluation are further explained in Section 6.

6. CRISP-DM6: Deployment.
The findings are then presented in a form that can be used
by the organization. This may include the implementa-
tion of the developed model and preparation of reports.
The deployment informs the learning and enhances the
business and process understanding.

3. Data Modeling

Organizations store information about H&S incidents such
as incident descriptions, incident investigation results and known
factors that contributed to the incidents (e.g., a lack of training or
poor weather conditions) [9–12]. Many organizations also use
Occupational Health and Safety Management Systems (OHS
MS) which record vast amounts of H&S data including “safety
observations . . . and near miss reporting” [17].

In order to better understand the nature of such H&S data,
we advocate creating a conceptual model of the data, for ex-
ample using the Object Role Modeling (ORM) notation [16].
ORM allows a modeler to create a graphical representation of
object types in a universe of discourse (e.g., H&S events), define
relationships between them as well as any related constraints.
We used ORM to model H&S data recorded by the case study
company.

In order to minimise H&S risks, the case study company
encourages employees to report observations about any events
that could help prevent incidents. For example, such observa-
tions may include information about equipment malfunctions,
unusual site conditions or employee malpractices (e.g., not using
personal protective equipment (PPE)). Another type of reporting
is concerned with incidents that occurred, e.g., an equipment
breakdown that resulted in downtime or an employee injury.

H&S data collected by the case study company included
information about 53,094 observations and 3,187 incidents that
spanned 428 days (observation and incident records were stored
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Figure 1: Relationships between the different phases of the proposed approach to Causality Mining.

in separate data sets). Each observation and each incident is de-
scribed by a set of attributes. In the study, we used the following
incident attributes: ID, date of occurrence, time of occurrence,
sign off date, department, physical location, specific location,
summary, description, lessons learned and findings; and the
following observation attributes: ID, date of occurrence, sign off
date, department, physical location, specific location, summary,
safe activity description and unsafe activity description (relevant
observation and incident attributes were selected in discussions
with the company H&S experts). In addition, a separate data
set provided information about relationships between different
organizational units: departments, sub-groups, groups, business
units and divisions. The values of attributes date of occurrence,
time of occurrence and sign off date as well as the values of orga-
nizational units are structured; the values of all other observation
and incident attributes are unstructured text descriptions entered
by employees.

We created a conceptual model of this information using
ORM. Figure 2 depicts a fragment of the developed ORM model
of the H&S data which was subsequently used to discover causal
dependencies between observations and incidents. The model
describes two types of events recorded in the H&S data: each
event is either an observation or an incident (the exclusion con-
straint is depicted by a circled “x” symbol in Figure 2). Each
event is associated with a department in the organization and
has a summary recorded as text, the date of occurrence and the
location in which the event occurred (these mandatory roles
are indicated by dots in Figure 2). Moreover, each event only
has one summary, location, department and date of occurrence
(the uniqueness constraints are indicated by bars placed above
the roles in Figure 2). An event may also have a sign off date,
i.e., the date when it was reviewed and acted upon if required.
Each location is specified by a physical location and may have a
specific location which is a further specification of the physical
location. Each department is related to a sub-group which is a
part of a group. A group is a part of a business unit which is a
part of a division. Each incident also has the time of occurrence
and a description recorded as text. An incident may also have
findings and lessons learnt (recorded as text): if one value is
recorded for an incident then another value is also recorded (the
constraint is depicted by a circled equality symbol in Figure 2).

Observations may also have safe or unsafe activity descriptions
which provide further details about observed activities.

The model allowed us to unambiguously specify H&S ob-
jects (e.g., events, observations and incidents) and relationships
between them (e.g., observations can cause incidents). Causal
dependencies between observations and incidents are, however,
not known. Sections 4 and 5 describe our proposed approach
to the discovery of such dependencies based on the analysis of
available H&S data.

4. Proximity Model for Causality Mining

In our approach, proximity, which is defined as “nearness in
space, time, or relationship”4, is used as a measure for causality.
Causality is an important notion that has been examined in
quite a few disciplines [18]. As pointed out by Karimi [18],
“understanding causal relations” can allow one to “predict the
future”, and in case one can modify certain variables in the
present one may even be able to “exert control on the behavior
of the system”. While there are different views on causality,
our focus is on the prediction of future events, and as such it
is natural to think of causes and effects as having temporal and
spatial connections. In [19] (p. 9), for example, this is expressed
through the causality “attributes” of antecedence and contiguity,
where “[a]ntecedence postulates that the cause must be prior
to, or at least simultaneous with, the effects” and “[c]ontiguity
postulates that cause and effect must be in spatial contact or
connected by a chain of intermediate things in contact”.

In the context of our approach, we aim to determine what
the likelihood is of observations contributing to incidents based
on past experience. Predictions are thus probabilistic calcula-
tions derived from historic data. These calculations take into
account the level of confidence in causal relationships between
observations and incidents (or between observations). The level
of confidence is a measure of the strength of the causal relation-
ship and is determined by the duration of the interval between
observation and associated incident and by the distance of the
locations. The notion of distance is complex as multiple aspects
of distance can play a role, both for virtual locations (which can

4https://en.oxforddictionaries.com/definition/proximity
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Figure 2: A fragment of the conceptual model of the H&S information collected at the case study company (captured using ORM notation).

be, for example, a position or role on an organizational chart)
and for physical locations (a distance notion in this context could
be influenced by the layout of a building). Temporal relations
can be determined by periodicity (e.g., certain events may oc-
cur every first Tuesday of the month or every night); however,
periodicity is not considered in our model.

There is another aspect that may strengthen the link between
observations and incidents and this may be abstracted in the con-
cept of similarity. Similarity may relate to textual descriptions
of observations and incidents or may concern locations where
observations and incidents took place. In the latter case, loca-
tions may share certain environmental features or organizational
characteristics and thus be considered to be more similar.

All together, the notions of distance in time and space and
the notion of similarity act as determinants for causality. In our
approach, the closer events are in time, space, and the more
similar they are, the higher the expected degree of casuality.
Hence, proximity becomes a measure for causality. For each of
the constituent dimensions (time, space, and similarity), the no-
tion of proximity is subjective but needs to be precisely defined.
A proximity dimension may be captured through a number of
different definitions, each focussing on different aspects of the
dimension, noting that such aspects may take characteristics
of the application domain into account. All these definitions
across the three dimensions need to be weighted to get an overall
proximity score. In the next section, a concrete proximity model
is proposed in the context of the domain of health and safety.

5. Proximity Modeling in the H&S Domain

In discussions with the project partner and based on the
constructed conceptual model of the H&S data (described in
Section 3) we formulated several hypotheses about causal de-
pendencies between observations and incidents based on their
similarity and proximity in time and space. It was an iterative
process which involved several brainstorming sessions with the
company H&S experts during which a number of hypotheses
were considered. As a result of these discussions, six hypotheses
were selected, implemented and evaluated. Let E be the set of
all H&S events, O ⊂ E be a set of observations, and I ⊂ E be a
set of incidents. Let ea denote the value of attribute a of event
e ∈ E; for example, isummary, where i ∈ I, denotes the value of
attribute summary of incident i. We describe the formulated
hypotheses and a way to operationalize them in Sections 5.1–5.3.
Note that all the subsequently presented sample instantiations
of the proposed proximity measures emerged in the discussions
with the stakeholders.

5.1. Proximity in time
As discussed in Section 4, causes must precede or happen

simultaneously with the effects. In the context of H&S data, for
example, an observation which reports a leak from a piece of
equipment would precede the equipment breakdown incident.
Moreover, such events would likely happen close in time. Hence,
our first hypothesis captures this relationship.

Hypothesis 1 “Event Ordering”: An incident that occurred
shortly after an observation may be related to the observa-
tion: the closer the observation date to the incident date the
stronger the relationship.
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Proximity measure: Each observation and each incident has
the date of occurrence. For a given observation o ∈ O and
a given incident i ∈ I, the proximity (denoted by TPeo(o, i))
is measured as an exponential function of the number of
days between the observation date and the incident date.
Let days(o, i) be a function that returns the number of days
between odate of occurrence and idate of occurrence:

TPeo(o, i) =
⎧⎪⎪⎨⎪⎪⎩

e−1×days(o,i)/10, if days(o, i) ≥ 0
0, otherwise.

It was observed in practice that observation reports can be cre-
ated at later dates. For example, an employee who observes an
H&S issue may need to attend to other urgent tasks and creates a
report of the observation a few days later. Thus, an observation
may be reported after the date of a related incident. Our second
hypothesis reflects this issue of unreliable event timestamps.

Hypothesis 2 “Fuzzy Event Ordering”: An observation
whose date is after the date of an incident may be related to
the incident; the closer the incident date to the observation
date the stronger the relationship.
Proximity measure: Each observation and each incident has
the date of occurrence. For a given observation o ∈O and a
given incident i ∈ I, the proximity (denoted by TPfeo(o, i)) is
measured as an exponential function of the number of days
between the incident date and the observation date.

TPfeo(o, i)=
⎧⎪⎪⎨⎪⎪⎩

0.5×e−0.5×days(i,o)/5, if −10 ≤ days(o, i) < 0
0, otherwise.

H&S observations reported by employees are regularly reviewed
by the company H&S specialists and acted upon if required.
When an issue reported in an observation is resolved the obser-
vation is signed off and the sign off date is recorded. Hence, our
third hypothesis reflects the idea that incidents that happened
after an observation sign off date are unlikely to be caused by
the observation.

Hypothesis 3 “Event Sign off”: If the date of occurrence of
an incident is after the sign off date of an observation, then
the observation and the incident are not related.
Proximity measure: Each observation and each incident has
the date of occurrence. An observation may also have the
sign off date. For a given observation o ∈ O and a given
incident i ∈ I, if the incident date is after the observation
sign off date the proximity (denoted by TPeso(o, i)) is zero,
otherwise it is one.

TPeso(o, i) =
⎧⎪⎪⎨⎪⎪⎩

0, if days(osign off date, idate of occurrance) > 0
1, otherwise.

5.2. Proximity in space

Another property of causality discussed in Section 4 is con-
tiguity which refers to the spatial connection between causes
and effects. Our fourth hypothesis considers physical locations
of H&S events (e.g., sites or buildings where observations and
incidents happened).

Hypothesis 4 “Location proximity”: Observations and inci-
dents that occurred at the same or nearby locations may be
related.
Proximity measure: Each observation and incident is associ-
ated with a location. As described in Section 3, each location
is specified by a physical location (e.g., a street address) and
may have a specific location (e.g., a level or a room). Physi-
cal and specific locations are specified as text and employees
reporting observations and incidents may use slightly differ-
ent descriptions when referring to the same location. Hence,
we use string similarity to compare event locations. For a
given observation o ∈ O and a given incident i ∈ I, the loca-
tion proximity (denoted by LP) is measured as the weighted
average string similarity of their respective physical and spe-
cific locations. Let sim(text1, text2) be a function that returns
string similarity of two text values (e.g., cosine similarity can
be used or other methods discussed later in this section) and
let wph l and wsp l be given weights to use for the physical
locations and specific locations, respectively:
LP(o, i,wph l ,wsp l) =

wph l × sim(ophysical location, iphysical location) +
wsp l × sim(ospecific location, ispecific location).

While the previous hypothesis considers physical and specific
locations of observations and incidents, our fifth hypothesis
targets their virtual locations, more specifically, locations in the
organizational structure. The likelihood of a causal dependency
between an observation and an incident increases if the events
are associated with the same organizational unit or with units
which are close in the organizational structure.

Hypothesis 5 “Organizational proximity”: Observations and
incidents reported by the same unit or nearby units in the
organizational structure may be related.
Proximity measure: As described in Section 3, each event is
associated with a department which is related to a sub-group.
Sub-groups are contained in groups that are contained in busi-
ness units that are contained in divisions, i.e., the organiza-
tional model is a tree-like structure. For a given observation
o ∈ O and a given incident i ∈ I, the organizational proxim-
ity (denoted by OP(o, i)) is a function of the position of
the Lowest Common Ancestor (LCA) in the organizational
hierarchy. A deeper LCA suggests a stronger relationship,
i.e., the strongest relationship is between two events associ-
ated with the same department. Let lca(o, i) be a function
that returns the LCA of the organizational units that reported
o and i in the organizational structure of the project partner:

OP(o, i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if lca(o, i) = department
0.5, if lca(o, i) = sub-group
0.25, if lca(o, i) = group
0.125, if lca(o, i) = business-unit
0.0625, if lca(o, i) = division
0.03125, otherwise.
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5.3. Event similarity

Finally, our sixth hypothesis considers semantic similarity
of H&S events. If an observation and an incident share common
vocabulary in their descriptions (e.g., refer to the same type of
activity or equipment), then the probability that these events are
related increases.

Hypothesis 6 “Event similarity”: Observations and incidents
with similar descriptions may be related.
Proximity measure: As discussed in Section 3, each observa-
tion and incident has a summary specified as text. Additional
information about events may be provided in other text at-
tributes, e.g., in descriptions, findings or lessons learned of
incidents or in safe or unsafe activity descriptions of ob-
servations. Similarity of a given observation o ∈ O and a
given incident i ∈ I (denoted by ES(o, i)) is measured as the
maximum similarity of their text descriptions provided in
any of the attributes specified above, e.g., in summaries or
findings (we calculate pairwise similarities and select the
maximum value). This can be achieved using text similar-
ity techniques. Let desc(e) denote the set of all attributes
of event e ∈ E which constitute textual descriptions of the
event. For example, according to Figure 2, for an incident
i ∈ I, it holds that desc(i) = {summary, description, findings,
lessons learned}, and for an observation o ∈O, it holds that
desc(o) = {summary, safe activity description, unsafe ac-
tivity description}. Then, the event similarity proximity
measure can be captured as:
ES(o, i) = maxdo∈desc(o),di∈desc(i) sim(do,di).

A number of text similarity approaches have been proposed in
the literature [20] that can be used to compare text descriptions
of events. Our approach currently supports cosine similarity,
Jaro-Winkler similarity and an ontology-based text similarity
approach [21], while other approaches can be easily integrated.

5.4. Overall proximity

The overall proximity (denoted by Pr) of a given observation
o ∈O and a given incident i ∈ I is a function of specific proximi-
ties described in Sections 5.1-5.3. Let wph l and wsp l be weights
of the physical and specific locations, and let cop, clp, ctp and ces
be coefficients of the organizational proximity, location proxim-
ity, time proximity and event similarity, respectively. Then, the
overall proximity can be defined as follows:

Pr(o, i,wph l ,wsp l ,ctp,clp,cop,ces) =
ctp×(TPeso(o, i)×TPeo(o, i)+TPfeo(o, i))+
clp×LP(o, i,wph l ,wsp l)+
cop×OP(o, i)+ces×ES(o, i).

Thus, a high value of the overall proximity between two events
should signify a high likelihood of a causal dependency between
them. For example, there may be a high probability of a causal
dependency between an observation and an incident with similar
summaries that were reported by the same department, happened
on the same day at the same location.

In the case study, the values of the coefficients were de-
fined in discussions with the project partner (for details see

Section 6.1). A direction for future work is the use of machine
learning to learn these values from data.

6. Case Study

This section reports the results of the case study with the
project partner and discusses several examples of identified
causalities between observations and incidents.

6.1. Configuration and results
We applied our approach to the collected H&S data and

discussed discovered causal dependencies between observations
and incidents with H&S experts from the case study company.
The process was repeated using different coefficients in the
overall proximity formula and different text similarity methods.

We first executed our approach using all observations (53,094)
and incidents (3,187). The following coefficients and weights
were defined in discussions with the industry partner: ctp = 1,
clp = ces = 0.8, cop = 0.4, and wph l = wsp l = 0.5. In the first
iteration, we considered observation and incident summaries
(i.e., desc(o) = {summary} and desc(i) = {summary}) and used
cosine similarity to measure event similarity.

More than 169 million observation-incident combinations
were checked and ranked based on their overall proximity scores
(53,094 observations and 3,187 incidents yield 169,210,578 com-
binations). We then inspected 200 observation-incident combi-
nations with the highest proximity scores (ranging from 2.05
to 2.71): 20 out of 200 combinations were found interesting or
somewhat interesting. The company H&S experts commented
that the approach works well for process safety incidents (ex-
amples 2 and 3 described in Section 6.2 were identified during
the first iteration of the analysis); however, it does not identify
interesting insights for incidents that resulted in injuries. They
asked us to modify the approach configuration and repeat the
analysis for a subset of injury-related incidents.

The second round of analysis was performed for all observa-
tions (53,094) and 582 injury-related incidents (identified by the
H&S experts). To measure event similarity of the observations
and the incidents, we considered all attributes which provide
text descriptions of the events (i.e., for a given incident i ∈ I,
desc(i) = {summary, description, findings, lessons learned},
and for a given observation o ∈ O, desc(o) = {summary, safe
activity description, unsafe activity description}). Text sim-
ilarity was measured using an ontology-based text similarity
approach [21, 22]. The following values of the coefficients
and weights were used during this round of analysis: ctp = 0.5,
clp = 0.8, cop = 0.2, ces = 1.5, wph l = 7/8 and wsp l = 1/8; the
values were adjusted after the first iteration in the discussions
with the domain experts.

In total, 30,900,708 combinations of observations and injury-
related incidents were ranked based on their overall proximity
scores. We checked 100 observation-incident combinations with
the highest proximity scores (ranging from 1.89 to 2.99): 19
combinations were identified by us as potentially interesting. An
H&S expert from the partner company noted that the analysis
(with the modified configuration) helped to identify some inter-
esting causalities for injury-related incidents (e.g., examples 1
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and 4 described in Section 6.2) and that some other identified
causalities describe the same events; for example, when an em-
ployee records an event as an observation and then creates an
incident for the same event (although such events are technically
related, they do not provide interesting H&S insights). The use
of an ontology-based method for measuring text similarity, in
particular the one reported in [21, 22], contributed to a better re-
sult for the injury-related incidents. It was noted by the company
H&S expert that process safety incidents are often described
using common terms and phrases shared by employees (hence, it
was possible to identify process safety causalities using a simple
text similarity measure such as cosine similarity), while there is
no shared vocabulary used to describe injury-related incidents
(hence, an ontology-based method performed much better than
cosine similarity).

6.2. Examples of identified causal dependencies

In this section, we describe four examples of causal depen-
dencies identified with the help of our approach and confirmed
by the industry partner. The examples are anonymised. We show
text descriptions of events reported by employees; however,
words which refer to locations and equipment identifiers are re-
placed with the text “[Location anonymised]” and “[Equipment
ID anonymised]”, respectively.

Table 1: Example 1: “Systemic issue”

Summary of
observation 1

“TOILET PAPER LEFT ON THE FLOOR”

Incident summary “Employee slipped on water and fell on the floor
in the female toilet”

1 Time proximity Observation 1 was reported 4 days before the
incident.

Organizational
proximity

Both events were reported by the same depart-
ment.

Location
proximity

Both events happened at the same physical loca-
tion, text descriptions of the specific locations
are different.

Summary of
observation 2

“WATER ON FLOOR”

Incident summary “Employee slipped on water and fell on the floor
in the female toilet”

2 Time proximity Observation 2 was reported 3 days after the in-
cident.

Organizational
proximity

Both events were reported by the same business
unit.

Location
proximity

Both events happened at the same physical loca-
tion, text descriptions of the specific locations
are different.

Table 1 shows two discovered causalities associated with the
same incident. The events report either paper (observation 1) or
water on the floor (observation 2 and the incident) identified at
the same physical location within a few days. In one case an
employee slipped on water and fell (reported in the incident).
An H&S expert from the case study company commented that
these causalities show that there is a general housekeeping issue
at the location which could lead to an employee injury. The
example demonstrates that causalities could help to uncover

systemic issues. Once such issues are addressed, this could lead
to incident prevention.

Table 2: Example 2: “Early warning”

Observation
summary

“The compressor bund has a fair amount of oil
in it from the compressor oil pump leak and
needs to be pumped out”

Incident summary “[Location anonymised] Field Compressor
[Equipment ID anonymised]. Identified Low-
Low level shutdown switch for Compressor Oil
was installed incorrectly and would never alarm
in a real low oil situation, which could poten-
tially cause major engine damage”

Time proximity The observation was reported 2 days before the
incident.

Organizational
proximity

Both events were reported by the same depart-
ment.

Location proximity Both events happened at the same physical loca-
tion, text descriptions of the specific locations
are different.

Table 2 describes an observation which reports an oil leak
from a compressor and an incident at the same physical location
reported two days later by the same department which describes
a problem with the installation of a switch in a compressor (the
switch “would never alarm in a real low oil situation, which
could potentially cause major engine damage”). An H&S expert
from the partner organization noted that both events describe
issues identified in similar pieces of equipment at the same loca-
tion within a few days and that identification of such problems
“could lead to ad hoc maintenance to identify similar issues”.
This example shows that causalities could help to identify events
which provide early warnings and thus could help to prevent
serious incidents (e.g., major engine damage).

Table 3: Example 3: “Incident investigation”

Observation
summary

“PTA performed prior to isolating compressors
and topping up oil.”

Incident summary “[Equipment ID anonymized] oil leaking from
drivehead gearbox splattering oil to grade.”

Time proximity The observation was reported 3 days before the
incident.

Organizational
proximity

Both events were reported by the same depart-
ment.

Location proximity Both events happened at the same physical loca-
tion, text descriptions of the specific locations
are different.

Table 3 shows another example of an oil leak report (in the
incident). The incident is linked to an observation reported three
days earlier with the following summary: “PTA performed prior
to isolating compressors and topping up oil”. PTA (Personal
Task Assessment) refers to a job hazard analysis which is per-
formed before a maintenance activity and aims to identify all
possible hazards associated with the maintenance activity. The
causality indicates that the oil leak reported in the incident could
be related to the equipment maintenance reported in the obser-
vation. We learned from the incident’s “Lessons learnt” record
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that the incident was indeed caused by preventative maintenance:
“Vigilance around preventative maintenance programs for drive
head maintenance are necessary to help prevent future spills”.
This example shows that causalities could assist in incident in-
vestigations and shed light onto incident causes.

Similarities between events described in Examples 1–3 were
measured based on their summaries; hence, in Tables 1–3 we
only show summaries and omit other text descriptions of the
events. In Example 4 (described below) safe activity descriptions
of the observations and the incident’s findings were used to
measure event similarity; hence, in Table 4 we also show these
attributes.

Table 4 describes two causalities related to the same incident.
The incident and the observations were reported on the same
day. The incident reports an injury sustained by an employee
and the observations describe a project safety stand down held
after the incident (observation 1) and a safety stand down meet-
ing conducted after the incident (observation 2). As we can
see from the incident’s findings (Table 4), wet weather was a
factor contributing to the injury: “Combination of wet weather;
rain and residual oil from broken pipe work present on the skid
deck”. During the safety stand down meeting employees dis-
cussed details of the incident and the importance of assessment
of changing weather conditions as well as other safety practices:
“... Open discussion on the incident including; oil and water on
work surfaces; ...; use of absorbent pads to clean and maintain
work surfaces; assess changing weather conditions rain water on
skid area ...” (Table 4, safe activity description of observation 2).
The example demonstrates that causalities can help to discover
how incidents are managed in order to prevent similar incidents
from occurring.

In summary, the examples described above show how causal-
ities could help to identify systemic issues (Example 1) or events
that provide early warnings (Example 2), could assist with inci-
dent investigations (Example 3) and help to understand incident
management practices (Example 4). Such discoveries could help
to prevent H&S incidents (Examples 1 and 4) as well as process
safety incidents (Examples 2 and 3).

7. Related Work

In order to improve the management of H&S risks, many
organizations use occupational H&S management systems [17,
23]. Such systems record large volumes of H&S data; however,
it remains a challenge to analyse this data and extract insights
which could help to prevent H&S incidents [17, 23, 24].

A few recent articles describe the use of Big Data tools in the
H&S domain [25–29]. Rashidy et al. [25] present an approach
for modeling safety data which is based on the use of graph
databases and aims to facilitate the identification of factors as-
sociated with SPADs (Signals Passed At Danger, i.e., “events
where a train passes a stop signal and proceeds onto a section
of track where it does not have authority” [25]). Guo et al. [26]
describe a case study in which they developed a Big Data plat-
form for collecting, classifying and storing data about unsafe
behaviours of workers involved in a construction project. Walker
and Strathie [27] demonstrate how data from On-Train Data

Table 4: Example 4: “Incident management”

Summary of
observation 1

“HP Drains Compressor Re-Wire project held a
safety stand down after arnlaceration incident.”

Safe activity
description of
observation 1

“HP Drains Compressor Re-Wire project held a
safety stand down after an arm laceration incident.
I ran the assembled team and Operations personnel
through the incident that occured today and had a
session around hazards and controls for safe access;
egress and work conditions in a very tight workface.
The input was constructive; open and honest with
involvement of plant operators as well. The output
from the session will be reviewed in another con-
struction risk assessment tomorrow morning.”

1 Incident
summary

“IP was accessing an area of the [Equipment ID
anonymised] Compressor. Whilst doing so sustained
a laceration to his lower left forearm.”

Incident
findings

“Work areas tight and restrictive due to the design
of the fixed plant and scope of work required. There
was no specific risk assessment of the method to
access and egress the work area over and through
piping.Grip tape had not been installed on all pipes
that were to be footed. Combination of wet weather;
rain and residual oil from broken pipe work present
on the skid deck.IP was carrying hand tools in one
hand and stumbled momentarily loosing three points
of contact whilst accessing work area and as a result
left arm came in contact with fixed plant.”

Time
proximity

Both events happened on the same day.

Organizational
proximity

Both events were reported by the same business unit.

Location
proximity

Both events happened at the same physical location,
text descriptions of the specific locations are differ-
ent.

Summary of
observation 2

“Safety Stand-Down Meeting conducted following
FAC incident”

Safe activity
description of
observation 2

“Safety Stand-Down Meeting conducted following
FAC incident to discuss - Details of the incident
Open discussion on the incident including; oil and
water on work surfaces; use of grip tape on all steel
pipework that must be stepped onto for access; ac-
cess to tight and awkward work spaces; maintain
three points of contact whilst accessing work areas;
use of absorbent pads to clean and maintain work sur-
faces; assess changing weather conditions rain water
on skid area; Other issues - Emphasis on health and
safety as first priority and then schedule Requirement
to maintain work areasVigilance around open grid
mesh work zones.Potential heat stress and hydration
issues leading into summer.”

2 Incident
summary

“IP was accessing an area of the [Equipment ID
anonymised] Compressor. Whilst doing so sustained
a laceration to his lower left forearm.”

Incident
findings

As in “Incident findings” shown above for causality
1 (not shown here due to space limit).

Time
proximity

Both events happened on the same day.

Organizational
proximity

Both events were reported by the same business unit.

Location
proximity

Both events happened at the same physical location,
text descriptions of the specific locations are differ-
ent.
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Recorders (OTDR) can be used to help identify risks faced by
rail operators and related to human performance. Tan et al. [29]
describe the use of Big Data tools for risk mitigation, e.g., the
use of hands-free checklists by workers in the oil & gas industry
to decrease the chance of mistakes during equipment assembly.
Huang et al. [28] propose an accident investigation paradigm
based on the use of safety Big Data and present a case study
which illustrates the paradigm. Despite an increasing interest
in the use of Big Data tools in the H&S domain, there are a
number of challenges associated with such applications which
require further research [24]. Moreover, Ouyang et al. [24] argue
that “safety data is becoming exponentially un-analyzable with
traditional statistics methods” and researchers should “rethink
on how to exploit the vast values of safety data efficiently”.

Process mining is a research area at the intersection of busi-
ness process management (BPM) and data analytics which is
concerned with analysing process execution history recorded
in event logs [8]. Process mining includes process discovery
and enhancement tools which can construct or repair process
models based on event log data (e.g., Leemans et al. [30] and
Polyvyanyy et al. [31]) as well as methods that can analyse and
visualise various aspects of process behaviour such as process
conformance and performance (e.g., van der Aalst et al. [32]).
Process mining methods were recently used to analyse process
execution data of a safety process and helped to uncover some
process performance and conformance issues [33]. However,
such methods can only work with logs which record events that
are “clearly defined and refer to precisely one case (i.e., process
instance) and one activity (i.e., step in the process)” [34].

If events are not explicitly linked to process instance identi-
fiers, event logs suitable for process mining can be created using
an event correlation approach [35–40]. Event correlation is “the
process of finding relationships between events that belong to the
same process execution instance” [35]. These approaches [35–
40] are based on the definition of event correlation conditions,
constraints or rules, e.g., “two events can only be causally re-
lated, if their activities are also related in the mined process
model” [39]. Similar to these event correlation approaches, we
aim to find relationships between events and we define a set of
hypotheses for linking events; however, our approach aims to
find causal dependencies between H&S events rather than link
events to process instance identifiers.

In summary, while a number of recent articles report the use
of Big Data analytics in the H&S domain [25–29], to the best
of our knowledge, the problem of identifying unknown causal
dependencies between H&S events has been overlooked. On
the other hand, a number of approaches in the process mining
area aim to correlate events [35–40]; however, these methods are
tailored to process execution data. Unlike the methods described
above, we presented an approach for finding causal dependencies
between events recorded in H&S data.

8. Conclusion

The paper presented a novel approach for discovering causal
dependencies between events recorded in large volumes of H&S
data. The approach is based on the notion of proximity of

H&S observations and incidents. The proposed approach was
evaluated through a case study conducted in an Australian energy
company. The evaluation demonstrated that the approach can
uncover causal dependencies between observations and incidents
reported by the company’s employees and that the discovered
causalities can shed light onto prevention, investigation and
management of H&S and process safety incidents.

We acknowledge that the presented method is prone to sev-
eral limitations. For example, at this stage, we can not conclude
that the proposed model for computing proximity between ob-
servations and incidents generalizes to other data sets from the
same or a different domain. Moreover, the method requires
interventions of experts to model the domain and to fine tune
its parameters. Hence, at this stage, the method cannot be fully
automated. In addition, one can formulate and test further hy-
pothesis for establishing proximity between events and study
other factors, beyond the phenomenon of proximity, that explain
the causal relationships between events.

The presented work opens a few avenues for further research.
One possibility is the incorporation of machine learning into the
approach in order to more accurately evaluate the overall prox-
imity of H&S events. For example, one can apply supervised
and semi-supervised learning techniques to use the information
on the identified, and confirmed by the domain experts, causal-
ities to incrementally learn “good” coefficients and weights of
the computation model. Another direction for future work is
the development of a method which can monitor observations
and trigger a warning when the likelihood of an incident is high.
Finally, the possibility of embedding the approach into the orga-
nization’s health and safety environment and its impact on the
organization’s health and safety culture could be investigated.
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[36] R. Pérez-Castillo, B. Weber, I. G. R. de Guzmán, M. Piattini, Improving
event correlation for non-process aware information systems., in: Inter-
national Conference on Evaluation of Novel Approaches to Software
Engineering (ENASE), SciTePress, 2012, pp. 33–42.

[37] F. Mannhardt, M. De Leoni, H. A. Reijers, Extending process logs with
events from supplementary sources, in: International Conference on Busi-
ness Process Management, Vol. 202, Springer, 2014, pp. 235–247.
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